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1 Introduction

The Pearson Type IV distribution was employed recently to (empirically)
characterize the shape of a pull distribution in [1]. Unfortunately, the infor-
mation necessary to utilize Pearson Type IV must be gleaned from a relatively
small number of references that are individually incomplete, and perhaps not
readily available to many physicists. It was therefore deemed useful to sum-
marize the collected information in a brief CDF note, which also includes
one or two possibly new results. The goal is to present enough information
to enable others to use this distribution in their analyses.

Pearson Type IV is used to fit observed distributions obtained from data
or Monte Carlo simulations. The Pearson types (I–XII) were intended to
provide distributions to approximate all unimodal possibilities: distributions
that are modeled well by Pearson Type IV (asymmetric with extensive tails)
are not modeled well by the standard “textbook” distributions. One often re-
quires a fit to an empirically obtained distribution to estimate quantities like
P -values, to generate toy Monte Carlo (simulating an observed spectrum),
or simply to characterize an observed distribution with a small number of
parameters. Pearson Type IV seems especially well suited to model pull
distributions, which are often asymmetric with non Gaussian tails.

2 The Pearson Type IV p.d.f.

The Pearson Type IV probability density function is given by

f(x)dx = k

1 +

(
x− λ

a

)2−m

exp

[
−ν tan−1

(
x− λ

a

)]
dx (m > 1/2)

where m, ν, a, and λ are real-valued parameters, and −∞ < x < ∞ (k is a
normalization constant that depends on m, ν, and a). (The symbols “m”,
“ν”, and “a” are adopted from [2], and “λ” is taken from [3], since [2] sets
λ = 0.) Since the p.d.f. is invariant under the simultaneous change (a→ −a,
ν → −ν), we also specify the convention a > 0. When m ≤ 1/2, the p.d.f. is
not normalizable.
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Pearson Type IV is essentially an asymmetric version of Student’s t dis-
tribution (when ν = 0, it is a Student’s t). In particular, for small values of
the parameter m, the tails are much longer than those of a Gaussian. For
m = 1, Pearson Type IV becomes an asymmetric version of the Breit-Wigner
(Cauchy) distribution.

We show two plots of the Pearson Type IV p.d.f. below:

m=2.25     ν=5     a=2     λ=17
k=0.0206631

0 20

The case m = 2.25 shows a tail that is obviously non Gaussian.

m=0.75     ν=1     a=0.5     λ=15
k=0.218991

0 20

The case m = 0.75 shows a very extensive tail.
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3 Mode and Inflection Points

This topic is covered in [2] for the general Pearson family of distributions.
The derivative of the Pearson IV p.d.f. with respect to x is given by

1

f(x)

df(x)

dx
= −2m

x− λ+ aν
2m

a2 + (x− λ)2

which means that there is always a single mode M given by

M = λ− aν

2m

where the derivative is zero. The second derivative is given by

1

f(x)

d2f(x)

dx2
=

2m(2m+ 1)(x− λ+ aν
2m

)2 − a2

2m
(4m2 + ν2)

[a2 + (x− λ)2]2

which is zero at exactly two inflection points I+ and I− given by

I± = M± a

2m

√
4m2 + ν2

2m+ 1

The inflection points are thus always equidistant from the mode. The value
of the second derivative at the mode is

d2f(x)

dx2

∣∣∣∣∣
x=M

=
−(2m)3

a2(4m2 + ν2)
f(M)

which is always negative, proving that the mode is located at the maximum
of the p.d.f., not a minimum.
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4 Moments

This section is also based on [2]. The mean 〈x〉 of the p.d.f. is

〈x〉 = λ− aν

2(m− 1)
(m > 1)

(The moments can be calculated without knowing k.) For ν 6= 0 and m ≤ 1,
we have 〈x〉 = ±∞, depending on the sign of ν: 〈x〉 = −∞ when ν > 0.

The variance µ2 is given by

µ2 = 〈(x− 〈x〉)2〉 =
a2

r2(r − 1)
(r2 + ν2) (m > 3/2)

where we have followed [2] in using r as an abbreviation for 2(m − 1). For
m ≤ 3/2, the variance is infinite.

Similarly, the third and fourth moments are

µ3 = − 4a3ν(r2 + ν2)

r3(r − 1)(r − 2)
(m > 2)

µ4 =
3a4(r2 + ν2)[(r + 6)(r2 + ν2)− 8ν2]

r4(r − 1)(r − 2)(r − 3)
(m > 5/2)

These expressions are often written in the alternative form

√
β1 =

µ3

µ
3/2
2

=
−4ν

r − 2

√
r − 1

r2 + ν2

β2 =
µ4

µ2
2

=
3(r − 1)[(r + 6)(r2 + ν2)− 8ν2]

(r − 2)(r − 3)(r2 + ν2)

There is also a recurrence relation connecting moments about x = λ:

〈(x− λ)n〉 = a
(n− 1)a〈(x− λ)n−2〉 − ν〈(x− λ)n−1〉

2m− n− 1
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5 Normalization

Unfortunately, after an excellent start, [2] gives no information about how to
calculate the normalization factor k. Refs. [3] and [4] both give

k =
22m−2|Γ(m+ iν/2)|2

πaΓ(2m− 1)
=

Γ(m)√
πaΓ(m− 1/2)

∣∣∣∣∣Γ(m+ iν/2)

Γ(m)

∣∣∣∣∣
2

The complex gamma function is available via CERNLIB CGAMMA [5].
Instead of calling CGAMMA, one can use the fact that∣∣∣∣∣Γ(x+ iy)

Γ(x)

∣∣∣∣∣
2

=
1

F (−iy, iy;x; 1)

where F is the hypergeometric function [6], sometimes written 2F1, which for
|z| ≤ 1 can be calculated via the series

F (a, b; c; z) = 1+
ab

c

z

1!
+

a(a + 1)b(b + 1)
c(c + 1)

z2

2!
+

a(a + 1)(a + 2)b(b + 1)(b + 2)
c(c + 1)(c + 2)

z3

3!
+· · ·

While for |z| = 1 this series converges absolutely when <(c− a− b) > 0, the
nth term is of order n−(1+c−a−b) (for large n), so convergence is slow (when
|z| = 1) unless <(c − a − b) � 1. That is, the series for F (−iy, iy;x; 1)
converges rapidly only when x� 1.

From the relation Γ(z + 1) = zΓ(z), it is trivial to show that∣∣∣∣∣Γ(x+ iy)

Γ(x)

∣∣∣∣∣
2

=

[
1 +

(
y

x

)2]−1 ∣∣∣∣∣Γ(x+ 1 + iy)

Γ(x+ 1)

∣∣∣∣∣
2

=

[
1 +

(
y

x

)2]−1 [
1 +

(
y

x+ 1

)2]−1 ∣∣∣∣∣Γ(x+ 2 + iy)

Γ(x+ 2)

∣∣∣∣∣
2

= · · ·

So a workable strategy for small x is to calculate F (−iy, iy;x+ n; 1) via the
series, for some n chosen to be sufficiently large, and work down to n = 0
using these relations.

Reference [4] simply suggests using∣∣∣∣∣Γ(x+ iy)

Γ(x)

∣∣∣∣∣
2

=
∞∏

n=0

[
1 +

(
y

x+ n

)2]−1

but for large y, this scheme, in practice, is too CPU-intensive even when only
moderate precision is required.
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5.1 example C code

In fact, it takes more space to describe the calculation of k than is necessary
for its implementation, so we present C code that does the job:

#include<math.h>

#include<float.h>

#include<assert.h>

double gammar2(double x,double y) {

/* returns abs(gamma(x+iy)/gamma(x))^2 */

const double y2=y*y, xmin = (2*y2>10.0) ? 2*y2 : 10.0;

double r=1, s=1, p=1, f=0;

while(x<xmin) {

const double t = y/x++;

r *= 1 + t*t;

}

while (p > s*DBL_EPSILON) {

p *= y2 + f*f;

p /= x++ * ++f;

s += p;

}

return 1.0/(r*s);

}

double type4norm(double m,double nu,double a) {

/* returns k */

assert(m>0.5);

return 0.5*M_2_SQRTPI*gammar2(m,0.5*nu)*exp(lgamma(m)-lgamma(m-0.5))/a;

}

When testing, the following special cases [6] are useful:

F (−iy, iy; 1
2
; 1) = cosh(πy) F (−iy, iy; 1; 1) =

sinh(πy)

πy
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6 The Cumulative Distribution

The cumulative distribution is defined as

P (x) =
∫ x

−∞
f(t)dt

The calculation of this quantity in the general case (real-valued m) is poorly
covered by the existing literature. Ref. [7] gives a continued fraction expan-
sion. No one seems to have noticed that P (x) can be expressed in terms of
the hypergeometric function, which we will now demonstrate:

The cumulative distribution is

P (x) = ka
∫ x−λ

a

−∞
(1 + t2)−me−ν tan−1 tdt

Using the substitution t = tan θ one obtains

P (x) = ka
∫ tan−1 x−λ

a

−π/2
cos2m−2 θe−νθdθ = kaeνπ/2

∫ π
2
+tan−1 x−λ

a

0
sin2m−2 φe−νφdφ

where φ = θ + π/2. A more familiar form for the integral

I =
∫ y

0
e−νφ sinrφ dφ

is achieved through the substitution w = 1−e2iφ = −2ieiφ sinφ, which yields

I = (−2i)−r−1
∫ z

0
wr(1− w)(iν−r−2)/2dw

where z is given by

z = 1− e2iy = −2ieiy sin y =
2

1− ix−λ
a

The integral w.r.t. w is an incomplete Beta function [8], which is related to
the hypergeometric function by∫ z

0
wα−1(1−w)β−1dw =

zα

α
F (α, 1−β;α+1; z) =

zα(1− z)β

α
F (1, α+β;α+1; z)

So we have

I =
e−νy sinr+1y

r + 1
eiyF

(
1,
r + 2 + iν

2
; r + 2;−2ieiy sin y

)
which yields

P (x) =
ka

2m− 1

1 +

(
x− λ

a

)2−m

exp

[
−ν tan−1

(
x− λ

a

)]
×
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(
i− x− λ

a

)
F

(
1,m+

iν

2
; 2m;

2

1− ix−λ
a

)
or more compactly,

P (x)

f(x)
=

a

2m− 1

(
i− x− λ

a

)
F

(
1,m+

iν

2
; 2m;

2

1− ix−λ
a

)

This is the main result. The corresponding series will be absolutely conver-
gent when x < λ− a

√
3. For x > λ+ a

√
3 one can use the identity

P (m, ν, a, λ;x) = 1− P (m,−ν, a,−λ;−x)

To handle the case |x−λ| < a
√

3 one can apply a “linear transformation”
(e.q. 15.3.7 in [6]) to produce

P (x) =
1

1− e−(ν+2im)π
−

iaf(x)

iν − 2m+ 2

1 +

(
x− λ

a

)2F (1, 2− 2m; 2−m+
iν

2
;
1 + ix−λ

a

2

)

There are many schemes for calculating the hypergeometric function other
than direct summation of the power series. One interesting example is pro-
vided in [9], which can also serve as a brief introduction to the hypergeometric
function itself.
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7 Generation

An elegant method for generating Pearson IV random deviates when m >
1 is given as an exercise in Luc Devroye’s “Non-Uniform Random Variate
Generation” [10]. Those interested in the method should read the text, which
is available online; here we only present our implementation (in C), which,
along with the code that calculates k, constitutes our solution to the exercise.

#include <math.h>

#include <assert.h>

double ranu(void); /* uniform 0 to 1 */

double type4norm(double m,double nu,double a);

double rpears4(double m,double nu,double a,double lam) {

/* returns random Pearson IV deviate */

const double k=type4norm(m,nu,1.0), b=2*m-2, M=atan(-nu/b);

const double cosM=b/sqrt(b*b+nu*nu), r=b*log(cosM)-nu*M, rc=exp(-r)/k;

double x,z;

assert(m>1);

do {

int s=0;

z = 0;

if( (x=4*ranu()) > 2 ) {

x -= 2;

s = 1;

}

if (x > 1) x = 1 - (z=log(x-1)) ;

x = (s) ? M + rc*x : M - rc*x;

} while (fabs(x) >= M_PI_2 || z + log(ranu()) > b*log(cos(x)) - nu*x - r);

return a*tan(x) + lam;

}
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8 Fitting to Pearson IV

When Karl Pearson developed his family of distributions, the maximum like-
lihood method was unknown. Pearson used the method of moments, which
is not really adequate in many cases, but may be used to provide starting
values to a maximum likelihood fitter.

The method of moments for Pearson IV is covered by [2]: One simply
computes the moments 〈x〉, µ2,

√
β1 and β2 from the data, and finds the

Pearson IV parameters that would give these moments. The following equa-
tions achieve the desired result:

r = 2(m− 1) =
6(β2 − β1 − 1)

2β2 − 3β1 − 6
ν = − r(r − 2)

√
β1√

16(r − 1)− β1(r − 2)2

a =

√
µ2[16(r − 1)− β1(r − 2)2]

4
λ = 〈x〉 −

(r − 2)
√
β1
√
µ2

4

The preferred method, maximum likelihood fitting, requires minimizing
the negative log likelihood given by

− lnL = m
N∑

i=1

ln

1 +

(
xi − λ

a

)2
+ ν

N∑
i=1

tan−1

(
xi − λ

a

)
−N ln k

where there are N observed data points xi. This must be done numerically.
If analytic derivatives with respect to the parameters are desired, the only
non elementary ones are

∂ ln k

∂ν
= −=ψ(m+ iν/2)

∂ ln k

∂m
= 2[ln 2 + <ψ(m+ iν/2)− ψ(2m− 1)]

which can be evaluated using the CPSIPG function from CERNLIB [11].
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